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Stochastic resonance in linear systems subject to multiplicative and additive noise
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Exact expressions have been found for the first two moments and the correlation function for an overdamped
linear system subject to an external periodic field as well as to multiplicative and additive noise. Stochastic
resonance is absent for Gaussian white noise. However, when the multiplicative noise has the form of an
asymmetric dichotomous noise, the signal-to-noise ré8NR) becomes a nonmonotonic function of the
correlation time and the asymmetry of noise. Moreover, the SNR turns out to be a nonmonotonic function of
the frequency of the external field as well as strongly depending on the strength of the cross correlation
between multiplicative and additive noi§&1063-651X99)11608-§

PACS numbd(s): 02.50—r, 64.10+h

Stochastic resonand8R) is a phenomenon found in dy- shows extrema as a function of noise correlation time and
namic nonlinear systems driven by a combination of a ranasymmetry as well as of the frequency of an external field.
dom and a periodic forcgl]. Although an external periodic Consider an overdamped linear system described by the
force can be replaced by some internal source of a perioditllowing stochastic differential equation:
nature, nonlinearity seems to be the necessary ingredient for
the onset of SR. However, it was shown recenfly3] that d_X: —ax— &(t)x+A cod wt) + (1), (1)

SR also occurs in linear systems subject to multiplicative dt

rather than to additive noise. It turns out that SR takes place h d . . ith
only for “color” multiplicative noise, in particular for di- "W eren(t) and¢(t) are Gaussian noise with zero mean. We

chotomous noise or for color noise with a short correlationSSUme that the correlation functions of boft) and &(t)

time [3], whereas SR disappears for white noise. It wag'@Ve an exponential form:
shown afterwards that SR also occurs for Gaussian fidise _ _ _
Poissonian noisg5], and for composite noisgs], which is (é(1)é(s))=orexd —\q|t—9[], o
intermediate between dichotomous and Gaussian hdise _
. . t)n(s))=o,exg —\,t—9|].
It must be emphasized, however, that in the above- (n(On(9)) =2 exil ~ 1| L
mentioned articles, the term “stochastic resonance” has |t js usually assumed that multiplicativaterna) and ad-

been applied to the nonmonotonic behavior of the outpuljitive (externa) noise have different origins, and, therefore,
signal amplitudg“amplification factor”), rather than to the they are not correlated. There are, however, some situations
usually considered signal-to-noise ratio. Moreover, onlyjn which this condition is violated. This happens when
multiplicative noise has been ConSldered, neglecting additlvgources of both noise have the same Origin, as in laser dy_
noise. We overcome here these two restrictions. By consithamics, or when strong external noise leads to an appreciable
ering the quadratic—in-field signal-to-noise ratio, we avoidchange in the internal structure of a system and hence in the
the problem of the initial phase of the signal which appearsnternal noise. The literature on this subject is quite extensive
when the linear—in-field amplification factor is analyzed. AS[8_20] For genera"ty, we assume that mu'tip"cative and
was emphasized in Re®], if the initial phase is random, the aqditive noise are exponentially correlated, i.e.,
averaging over this phase leads to the output signal vanishing
identically. (&) n(s))=ozexd —\g|t—s|]. (3)

The increasing number of articles published on SR re-
sembles the intensive study of dynamic chaos in the 1970s Notice that there is another form of SR when an external
and 1980s. The latter shows that there can be a close coReriodic force is replaced by a random foregperiodic SR
nection between nonlinear dynamics and the appearance Bfturns out that for some special mod@1] the manifesta-
seemingly stochastic features. Similarly, SR indicates thations of usual SR and aperiodic SR are quite similar.
stochastic systems can also exhibit resonance, which is a There are different ways to solve the linear stochastic
phenomenon usually associated with deterministic systemé&guation(1). In order to find the first two moments, let us
The typical manifestation of SR is the existence of a maxi-average Eq(1) and that multiplied by &, which gives
mum of the output signal and of the signal-to-noise ratio as a

function of the noise intensity. However, we use the term d(x) = —a(x)+A cog wt) — (¢x) (4)
“stochastic resonance” in a broad sense, namely, the non- dt ’

monotonic behavior of the output signal as a function of )

some characteristics of the noiggs correlation time or d(x%) 5 5
asymmetry, or of a periodic signalamplitude or frequendy gt~ 22+ 2()Acoswt) —2(&x) +(7x). (§)

Our analysis shows that in linear systems with multiplicative
noise, SR exists in this broad sense, i.e., the signal-to-noise Equation(4) contains the new correlatdg¢x), which has
ratio remains monotonic as a function of noise intensity buto be found separately. To this end, we will use the well-
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known Shapiro-Loginov formula for differentiation of expo- o3
nentially correlated random functiofi2]. For the function ffﬁ, (16)
. . 1¥2
considered(¢x), this formula reads
and
d(éx) | dx \ "
dt gdt 1 £X)- © Nt A (N1 +Ap)°
b1’25a+ N1’2=a+ 2 * 4 g1.

Multiplying Eq. (1) by &, averaging, and using Ed6), (17)

one obtains

Let us turn now to the calculation of the second moment.
The appropriate equatiofb) contains two new correlators,
(éx?) and(7x), the equations for which can be obtained by
multiplying Eq. (1) by 2¢éx and %, respectively, averaging

Equation(7) contains the higher-order correlat¢¢?x).  these equations and using the Shapiro-Loginov formula for
In order to close the system of equatigdsand(7), one has  the derivatives from these two correlators. The equations ob-
to use some decoupling procedure. Another possibility is taained contain a new correlatog »x) equation which can be
consider the special case of the two-state Markov process.obtained in a similar manner.

In the following, we consider nonsymmetric dichotomous ~ Omitting the tedious solution of these equations, we write
noise(random telegraphic processvhich is allowed to take down the stationary— value of the second moment:
on the valuesA; and —B; for multiplicative noise, and\,

d
%=—(a+)\l)(§x)—<§zx)+a3. (7)

and — B, for additive noise, wheré,,B;, A,,B,>0. The a+7\1+ 2A4 A? ~ fq

rate for the transitios\;— — B, will be denoted bya; and  (X%)s— . (o2tfaog)t oo (@t kgt 2A)

the reverse rate will be denoted ks (respectivelys; and 2 3

B, for A,~—B,). We choose the parameters to make 20, -

(&(t))={n(t))=0, which implies the relations + F(ahﬁ al—w®— o) |+2f403
aA1=a1By, B2A=pB1Bs. (8 x[a(a+ Xy +2A,) —20,] L, (19)

Therefore, we consider the special form of exponentially cor
related noisg?2), which has one of the two values, and its
parameters are

‘where the function$; have been defined earlier.

Our final step will be the calculation of the stationary
correlation function(x(t+ 7)x(t)). To that end, let us use
_ _ _ _ the averaged solution of the linear equatidm, which has
01=A1B1, 0,=AB,, NMi=agtay, No=B1+6;. © the following form:

We introduce two additional parameters, and A, ~ X(tF7)=x(tg(r)exp—ar)

which define the asymmetry of the noise : T
+Af exp(—av)g(v)cog w(t+ 7—v)]dv
Al:Al_Bl! AZZAZ_Bz. (10) 0

One can now easily find the higher-order correlation function + IT exp(—av)h(v)dv, (19
(&2x) entering Eq(7), namely 0

(E5) =1 (X)+ A 1(£x). (11  Wwhere

tion together with Eq(4) into the closed system of two equa-
tions for two unknown functiongx) and{£x). At this stage,

Inserting Eq.(11) into Eq. (7) transforms the latter equa- g(v)= < ex;{ B ng(u)du
0

we need only the asymptotic value tatoo of the first mo- t
ment, which turns out to be equal to h(t=v)={ n(vjexg = | &uydul). (20
<X>:Aflco§\wt)+fzsin(wt) ¢ (12) One can easily calculag(v) [23] by expanding the ex-
f3 4 ponential in series, performing the averages, and then once

again collecting the series into an exponential, which results

whereX;=\,+a and in
— a2 (5 N N
fi=aw ™+ (N +Aqp)bqb,, (13 g(v)= 1 exd —Nov]— 2 exyd —N;v].
N;—N; N;—N;
fo= o[ w?+ (X Ap2+ay], (14 @)

s o o 2 Similar calculations can be performed for the second in-
f3=(w"+b1)(w+b3), (19  tegral in Eq.(20), which gives
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o3 Taking these limits in the above-obtained formulas, one gets
h(t=v)=s—{exd—As(t=v)—1Jig(t=v). (22)  the following.
3 White noise
It is self-evident that for the stationary state E(K9)—(22)

reduce to Eq(12), which has been obtained by a slightly t to) VsD) —(a—e)(t—t
different method. {x(0)=| x(to) a—e exil —(a—e) o)]
Multiplying Eq. (19 by x(t) and averaging ovex, one JD
obtains the asymptotic value of the correlation function, +Aftexp[—(a— €)(t—u)Jcog wu)du— ’;_65 ,
/2 (A .
(X(t 7X(0) = () ag(n)exXp(—ar) + g [ sin(w) (31)
T 2 2 D
+f6cos{wt)]+7f exl— awh(u)dy, (2(0) = | X¥(to)— ——|exd —2(a—2€)(t—1o)]
0
t
(23 + +f [2A cog wU)Bk\eD J(x(U))
a—2e to
where
Xexd —2(a—2e)(t—u)]du, 32
Nabs sin(wr) ~Nawf; | Nywfs—Nibssin(wn) iL-2(a=2e)(t-u)] (32
5= b2+ w? b2+ w? ’ D (a—e)A?
(24) (x* >S‘ 2(a 2¢)[(a— €)%+ w?]
Nob,f7+ Ny Si N.bsfg+ Ny Si 3k“eD
fo=— 2M1 7b +2w n(w7)+ 182 sb 1@ f‘(wT)' +— K2 6_ ’ 33)
1t 2+w (a—e€)(a—2e)
(25 ,
B Ace
and K+ I ={ 325 * 2a=2e(a— 7+ ]
f7‘8:CO$wT)_eXF(_b1’27'). (26) K ED(za E)
+2—)9XF[ (a=e)|7]
According to Eq.(12), (x) contains the time-independent (a—e)*(a—2e)
term as well as the term which is periodic in time. Since we 2
A?coq w7) k“eD

are interested in the asymptotic value of the correlation func-
tion (23), one has to average this equation over the period of
the external field 2w 1. Then, Eq.(23) takes the form

Na—o+al] a—e? &4

Equations(32) and(33) for the moments, as well as Eq.

(X(t+ 7)X(1)) o= (X297 exp( — ar) (34) for the correlation function, reduce to previously known
results in the corresponding limiting cases. In the absence of
A% fifet+f,fs an external field A=0) and additive noisel§ = k=0), Egs.
+ N;— N, 2f, (32) and(33) coincide with those obtained i24], while in

the absence of multiplicative noise< x=0), Eq.(34) re-

_ 4 _ duces to that given if25].

f4j0 exp(—auh(u)du,  (27) According to the Wiener-Khinchin theorern6], the
power spectrum of fluctuatior§((1) is defined as the Fou-

where thef; are defined in Eq913)—(16) and (24)—(26). rier transform of the correlation function. We consider the

Prior to the analysis of the cumbersome equat®p, let  one-sided averaged power spectrum defined for posiiive
us consider the limiting case of white Gaussian noise. Aseonly, i.e.,
sume that both noises entering Ed) have zero mean and

their autocorrelation functions and their mutual correlatorss(m: 2(a—e€) D n AZe
are (a—¢)’°+0%\a—2¢  2(a—2¢)[(a—e)’+ w?]
(n(t)n(s))=Dd(t—s), (&()&(s)=zd(t—s), (28) «’eD(2a—¢) §
lameta—20)) T a—e)tr a2 2
(&) n(s))=r\eD8(t—s). (29 ,
2mkeD
Transition from the exponential correlatd® and(3) to + (a_—s)zé(ﬂ)- (35

the § correlatorg28) and(29) can be performed by the limits
0123%, N1 3—* keeping the following ratios constant: The power spectruns({2), Eq. (35), consists of three
parts: the signal output, which is represented hyfanction
g g g - i
—l:constED, 72 _ const . 73 _ const= k+/eD. at frequencyﬂ,_ the zero freque_ncy term connected Wlth th_e
1 o N3 cross correlation between noises, and a Lorenzian noise

(30 background. The noise part contains two “noise” contribu-
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0 2 P 5 0 1 2 3
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FIG. 1. Signal-to-noise ratio as a function of the frequemoyf FIG. 2. Influence of nonsymmetry of multiplicative noié&,
an external field for symmetric multiplicative noisa {=0) in the ~ =0, 0.2, 0.4, 0.6, and 1)@n the frequency dependence of the SNR

absence of the cross correlation between multiplicative and additivéhown in Fig. 1. The amplitude of the external figle=1 and all
noise (@3=0). The curves from the bottom upwards correspond toother parameters are the same as in Fig. 1.
different values of the amplitude of an external fidde=1.1, 1.5,

1.7, and 2.0. The parameters @re oy ==\, =\,=1 induced Lorentzian background amfunction peak at the

frequency of an external fieldwith a more cumbersome

tions and an additional term which represents the effect of°™™ for the appropriate coefficients. L
the signal on the noise. Although the “noise” term is For the case of noncorrelated multiplicative and additive

slightly influenced by the signal, the signal-to-noise ratioN0!S€3=0, the Fourier transform of the correlation func-
(SNR) is usually defined1,25] as a ratio of the signal to 10N (27) can be written in the following form:
“noise” power. Notice that the definition of SNR becomes 1 2

A

more problematic if one assumad hocthat noise depends S(Q))= 7T—(lluz—lzul)a(w—g)
on the signa(21,6). bi—by| f3

The SNR is defined by Eq35) as bl A2 bylu, byl

A 2e (X9)sf(bal1— 12)_E b§+92_b%+92 ,
wA?
Rgn= a-e (36) (39
SN A% 2k’De(2a—¢) where
2D+ ——+ =
[(a—e) + w?] (a—eg)
— bl'z_a —
which in the absence of multiplicative noise=0) reduces l1 o= b3+ Q2" Uy 5= D01 5f1 + 200
to the signal-to-noise ratio of the input signal, ’
A2 Then, the signal-to-noise ratio is
ar.
Rev~5p (37) - mA%(1u,—1,Uy)
. Rsn= blit,  bilup |

The following conclusions can be drawn from E(35)— 2<x2>stf3(b2| 1—byl,)+A? 5 5 — =5 3
(37): b5+ Q bi+Q

(i) If, analogously to Refs[3-6], one chooses the (39

asymptotic value of the first moment as an indication of SR, ko, the limiting cases of small{b; ,<1) and large
then the amplitude of the periodic term remains a monotonicEQb >1) frequencies of the external éignal
function of the noise strengthas was already established in 12 ’

the above-mentioned articles. Rsnob,, ,~Ki+ K,Q2, (40
(i) The signal-to-noise ratio for the small amplitude of an ’

external field, Eq(36), decreases whereas the SNR remains 1 Ks

a monotonic function of for all e<a, where(x(t)) remains Rsnab, ,,~ 2820528+ Ny) +t oz (4)

bounded.

Hence, the white multiplicative and additive noise in thewhere the positive quantitid§; can be easily found from Eg.
linear equation(1) does not lead to nonmonotonic behavior (39).
of the signal-to-noise ratio, and one needs, therefore, to turn As seen from Eqs40) and(41), the SNR increases ini-
to color noise. tially as )2, and then reaches the limiting value from above,
As one can see from Eq&3)—(27), the correlation func- i.e., the SNR has a maximum for some intermedi@teln
tion for the color noisg27) contains the same exponential Fig. 1, the SNR is shown as a function Qf for symmetric
and simple trigonometric functions af as the correlation dichotomous noise/;=0) for four different values of the
function (35) for white noise. Therefore, the power spectrumamplitude of the external fieldA=1.1,1.5,1.7,2.0). Hence,
of fluctuations will have the same general forfnoise- our exact calculation shows nonmonotonic behavior of the
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9.4

SNR

T

1

FIG. 3. SNR as a function of the correlation timg=\; * of ) o B
multiplicative noise for different values of the strength of this noise  F!G. 5. SNR as a function of the correlation timg=x, * of
(0,=1, 2, 3, and #for a=5 andA,=1. Other parameters are the Multiplicative noise in the presence of the cross correlatigrbe-
same as in Fig. 1. tween multiplicative and additive noise fop,=4. Other parameters

are the same as in Fig. 4.
signal-to-noise ratio as a function of the frequency of an

external field, which is dona fideresonance phenomenon. b,—a [ wA%(f1b,+f,m) 5
The latter phenomenon does not appear in the commonlyS({2)= - (b2t o2 (0= Q) +| 2by(x%)
. . L : : 1707 3(b5+ 09)
used adiabatic approximation, which applies only at low fre-
quencies. A%b,(f1by+fow)  2f,0, 1
The influence of the asymmetry of multiplicative noise on - 2, 2 N 2,02
the above-mentioned effect is shown in Fig. 2 foy=0, fa(bz+ o) 3 ] (bz+ 09
0.2, 0.4, 0.6, 1.0. A similar phenomenon was found earlier 2f 03 2mf 03 0
[27] for a slightly different definition of the signal-to-noise + a2r a2 T o o)
ratio in the absence of additive noise. Mol (B2 Ag)"+ 7] ba(bytAs)
So far we have considered the SNR as a function of the +(byby), (42)

frequency of an external field, whereas the SNR is usually
considered as a function of the noise strength. In our lineawhere the last term ;< b,), is obtained from the first term
case, we did not find any nonmonotonic dependence on thiey interchangingb; andb,. Equation(42) contains two re-
strength of multiplicative noise. However, another form of laxation frequencies of the dichotomous noibg, and b,
nonmonotonic behavior—in this case, minima—appeargwith additional frequenciesb; ,+\3, for the correlated
when the signal-to-noise ratio is plotted as a function of themultiplicative and additive noige The latter reduce to a
correlation timer=\;* for different values of the noise single frequencya—e for the limiting case of white noise.
strength(Fig. 3); a similar effect was seen earligg—6]. The signal-to-noise rati® is defined, analogously to Eqgs.
Equation(39) describes the power spectrum for noncorre-(35), ( 36), and(39), as the ratio of the intensity at frequency
lated multiplicative and additive noise. A straightforward but  [the amplitude of thes function in the first term in Eq.

tedious calculation in the presence of such correlations, (42)] to a sum of Lorentzian noise background at the same
#0, yields frequency. There are four such Lorentzians in Eg) for

SNR
SNR

> 0z 0r 08 08 013, 0z 04 06 08 1
T, Q
FIG. 4. SNR as a function of the correlation tim@z)x[l of FIG. 6. SNR as a function of the frequeneyof an external

multiplicative noise in the presence of the cross correlatigrbe- field in the presence of the cross correlation between multipli-
tween multiplicative and additive noise far=2 ando,=9. Other  cative and additive noise far,=9. Other parameters are the same
parameters are the same as in Fig. 3. as in Fig. 1.
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SNR

FIG. 8. SNR defined as an output sigiidbtted ling as in Ref.

noiseA ; for different values of the strength of multiplicative noise [6] or as its ratio to the noise backgroufih. (39)]. The parameters

for o3=1. Other parameters are the same as in Fig. 3.

area=o,=\,=w=A=1, 0,=0.25, ando;=0.

is absent when multiplicative and additive noise are noncor-

the correlated noise which reduce to the sum of two Lorentrelated,o3=0.

zians when the multiplicative and additive noise are noncor-

related.

It must be emphasized that our analysis is crucially influ-
enced by the definition adopted for the characteristics of SR,

All the curves shown in Figs. 1-3 have been obtained iras can be illustrated by the following example. Only multi-
the absence of the cross correlation between multiplicativglicative noise has been considered in Réf, and the out-
and additive noise. The latter, however, results in essentiallput signal has been accepted as a measure of SR. Thus, its
new features of SR as seen from the following examples. nonmonotonic behavior has been found as a function of the
In Figs. 4 and 5, we show the influence of the cross corcorrelation time of noise, which is shown in Fig. 6 of Ref.
relation between multiplicative and additive noise on SR as §6]. This graph—which represents only the first term in our

function of the correlation time for different values; of

these correlations. As a result, fog# 0, the minima shown

Eqg. (399—is reproduced in our Fig. 8 with the ordinates
shown at the left axis of this figure. In the same fig(mgth

in Fig. 3 may disappealFig. 4), and, moreover, the maxima ordinates at the right axiswe show the usual signal-to-noise

can be observe(Fig. 5).

ratio defined with the help of all the terms in E§9) As one

A similar phenomenon, namely the disappearance otan see from the comparison of these two graphs, the
maxima shown in Fig. 1 as a result of the cross correlationsnaxima obtained in Ref6] disappear if one uses the signal-

is presented in Fig. 6.

to-noise ratio instead of the signal itself.

On the other hand, the existence of the cross correlations Due to its simplicity, the linear equatiofl) allows an
may lead to some new phenomena, such as the maxima ekact solution, which shows the different manifestations of

SNR as a function of the asymmetry of noi$ég. 7), which

stochastic resonance.
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