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Stochastic resonance in linear systems subject to multiplicative and additive noise

V. Berdichevsky and M. Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 29 January 1999; revised manuscript received 19 April 1999!

Exact expressions have been found for the first two moments and the correlation function for an overdamped
linear system subject to an external periodic field as well as to multiplicative and additive noise. Stochastic
resonance is absent for Gaussian white noise. However, when the multiplicative noise has the form of an
asymmetric dichotomous noise, the signal-to-noise ratio~SNR! becomes a nonmonotonic function of the
correlation time and the asymmetry of noise. Moreover, the SNR turns out to be a nonmonotonic function of
the frequency of the external field as well as strongly depending on the strength of the cross correlation
between multiplicative and additive noise.@S1063-651X~99!11608-8#

PACS number~s!: 02.50.2r, 64.10.1h
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Stochastic resonance~SR! is a phenomenon found in dy
namic nonlinear systems driven by a combination of a r
dom and a periodic force@1#. Although an external periodic
force can be replaced by some internal source of a peri
nature, nonlinearity seems to be the necessary ingredien
the onset of SR. However, it was shown recently@2,3# that
SR also occurs in linear systems subject to multiplicat
rather than to additive noise. It turns out that SR takes pl
only for ‘‘color’’ multiplicative noise, in particular for di-
chotomous noise or for color noise with a short correlat
time @3#, whereas SR disappears for white noise. It w
shown afterwards that SR also occurs for Gaussian noise@4#,
Poissonian noise@5#, and for composite noise@6#, which is
intermediate between dichotomous and Gaussian noise@7#.

It must be emphasized, however, that in the abo
mentioned articles, the term ‘‘stochastic resonance’’ h
been applied to the nonmonotonic behavior of the out
signal amplitude~‘‘amplification factor’’!, rather than to the
usually considered signal-to-noise ratio. Moreover, o
multiplicative noise has been considered, neglecting addi
noise. We overcome here these two restrictions. By con
ering the quadratic–in-field signal-to-noise ratio, we avo
the problem of the initial phase of the signal which appe
when the linear–in-field amplification factor is analyzed.
was emphasized in Ref.@6#, if the initial phase is random, th
averaging over this phase leads to the output signal vanis
identically.

The increasing number of articles published on SR
sembles the intensive study of dynamic chaos in the 19
and 1980s. The latter shows that there can be a close
nection between nonlinear dynamics and the appearanc
seemingly stochastic features. Similarly, SR indicates
stochastic systems can also exhibit resonance, which
phenomenon usually associated with deterministic syste
The typical manifestation of SR is the existence of a ma
mum of the output signal and of the signal-to-noise ratio a
function of the noise intensity. However, we use the te
‘‘stochastic resonance’’ in a broad sense, namely, the n
monotonic behavior of the output signal as a function
some characteristics of the noise~its correlation time or
asymmetry!, or of a periodic signal~amplitude or frequency!.
Our analysis shows that in linear systems with multiplicat
noise, SR exists in this broad sense, i.e., the signal-to-n
ratio remains monotonic as a function of noise intensity
PRE 601063-651X/99/60~2!/1494~6!/$15.00
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shows extrema as a function of noise correlation time a
asymmetry as well as of the frequency of an external fie

Consider an overdamped linear system described by
following stochastic differential equation:

dx

dt
52ax2j~ t !x1A cos~vt !1h~ t !, ~1!

whereh(t) andj(t) are Gaussian noise with zero mean. W
assume that the correlation functions of bothh(t) and j(t)
have an exponential form:

^j~ t !j~s!&5s1 exp@2l1ut2su#,
~2!

^h~ t !h~s!&5s2 exp@2l2ut2su#.

It is usually assumed that multiplicative~internal! and ad-
ditive ~external! noise have different origins, and, therefor
they are not correlated. There are, however, some situat
in which this condition is violated. This happens whe
sources of both noise have the same origin, as in laser
namics, or when strong external noise leads to an appreci
change in the internal structure of a system and hence in
internal noise. The literature on this subject is quite extens
@8–20#. For generality, we assume that multiplicative a
additive noise are exponentially correlated, i.e.,

^j~ t !h~s!&5s3 exp@2l3ut2su#. ~3!

Notice that there is another form of SR when an exter
periodic force is replaced by a random force~aperiodic SR!.
It turns out that for some special model@21# the manifesta-
tions of usual SR and aperiodic SR are quite similar.

There are different ways to solve the linear stochas
equation~1!. In order to find the first two moments, let u
average Eq.~1! and that multiplied by 2x, which gives

d^x&
dt

52a^x&1A cos~vt !2^jx&, ~4!

d^x2&
dt

522a^x2&12^x&A cos~vt !22^jx2&1^hx&. ~5!

Equation~4! contains the new correlator^jx&, which has
to be found separately. To this end, we will use the we
1494 © 1999 The American Physical Society
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PRE 60 1495STOCHASTIC RESONANCE IN LINEAR SYSTEMS . . .
known Shapiro-Loginov formula for differentiation of expo
nentially correlated random functions@22#. For the function
considered,̂ jx&, this formula reads

d^jx&
dt

5 K j
dx

dt L 2l1^jx&. ~6!

Multiplying Eq. ~1! by j, averaging, and using Eq.~6!,
one obtains

d^jx&
dt

52~a1l1!^jx&2^j2x&1s3 . ~7!

Equation~7! contains the higher-order correlator^j2x&.
In order to close the system of equations~4! and~7!, one has
to use some decoupling procedure. Another possibility is
consider the special case of the two-state Markov proce

In the following, we consider nonsymmetric dichotomo
noise~random telegraphic process!, which is allowed to take
on the valuesA1 and 2B1 for multiplicative noise, andA2
and 2B2 for additive noise, whereA1 ,B1 , A2 ,B2.0. The
rate for the transitionA1˜2B1 will be denoted bya1 and
the reverse rate will be denoted bya2 ~respectivelyb1 and
b2 for A2↔2B2). We choose the parameters to ma
^j(t)&5^h(t)&50, which implies the relations

a2A15a1B1 , b2A25b1B2 . ~8!

Therefore, we consider the special form of exponentially c
related noise~2!, which has one of the two values, and
parameters are

s15A1B1 , s25A2B2 , l15a11a2 , l25b11b2 .
~9!

We introduce two additional parametersL1 and L2,
which define the asymmetry of the noise :

L15A12B1 , L25A22B2 . ~10!

One can now easily find the higher-order correlation funct
^j2x& entering Eq.~7!, namely

^j2x&5s1^x&1L1^jx&. ~11!

Inserting Eq.~11! into Eq. ~7! transforms the latter equa
tion together with Eq.~4! into the closed system of two equa
tions for two unknown functions,̂x& and^jx&. At this stage,
we need only the asymptotic value att˜` of the first mo-
ment, which turns out to be equal to

^x&5A
f 1 cos~vt !1 f 2 sin~vt !

f 3
2 f 4 , ~12!

wherel̃15l11a and

f 15av21~ l̃11L1!b1b2 , ~13!

f 25v@v21~ l̃11L1!21s1#, ~14!

f 35~v21b1
2!~v21b2

2!, ~15!
o
.

r-

n

f 45
s3

b1b2
, ~16!

and

b1,2[a1N1,25a1
l11L1

2
6A~l11L1!2

4
1s1.

~17!

Let us turn now to the calculation of the second mome
The appropriate equation~5! contains two new correlators
^jx2& and^hx&, the equations for which can be obtained
multiplying Eq. ~1! by 2jx and h, respectively, averaging
these equations and using the Shapiro-Loginov formula
the derivatives from these two correlators. The equations
tained contain a new correlator^jhx& equation which can be
obtained in a similar manner.

Omitting the tedious solution of these equations, we wr
down the stationaryt˜` value of the second moment:

^x2&st5H a1l̃112L1

a1l2
~s21 f 4s3!1

A2

2 F ~a1l̃112L1!
f 1

f 3

1
2s1

f 3
~al̃11aL12v22s1!G12 f 4s3J

3@a~a1l̃112L1!22s1#21, ~18!

where the functionsf i have been defined earlier.
Our final step will be the calculation of the stationa

correlation function̂ x(t1t)x(t)&. To that end, let us use
the averaged solution of the linear equation~1!, which has
the following form:

x~ t1t!5x~ t !g~t!exp~2at!

1AE
0

t

exp~2av !g~v !cos@v~ t1t2v !#dv

1E
0

t

exp~2av !h~v !dv, ~19!

where

g~v !5K expF2E
0

v
j~u!duG L ,

h~ t2v !5K h~v !expF2E
v

t

j~u!duG L . ~20!

One can easily calculateg(v) @23# by expanding the ex-
ponential in series, performing the averages, and then o
again collecting the series into an exponential, which res
in

g~v !5
N1

N12N2
exp@2N2v#2

N2

N12N2
exp@2N1v#.

~21!

Similar calculations can be performed for the second
tegral in Eq.~20!, which gives



ly

t
w
nc

As
d
or

s
:

ets

.
n

e of

-
he

he
oise
u-

1496 PRE 60V. BERDICHEVSKY AND M. GITTERMAN
h~ t2v !5
s3

l3
$exp@2l3~ t2v !21#%g~ t2v !. ~22!

It is self-evident that for the stationary state Eqs.~19!–~22!
reduce to Eq.~12!, which has been obtained by a slight
different method.

Multiplying Eq. ~19! by x(t) and averaging overx, one
obtains the asymptotic value of the correlation function,

^x~ t1t!x~ t !&5^x2&stg~t!exp~2at!1
^x&A

N12N2
@ f 5 sin~vt !

1 f 6 cos~vt !#1 x̄E
0

t

exp~2au!h~u!du,

~23!

where

f 55
N2b1 sin~vt!2N2v f 7

b1
21v2 1

N1v f 82N1b2 sin~vt!

b2
21v2 ,

~24!

f 652
N2b1f 71N2v sin~vt!

b1
21v2 1

N1b2f 81N1v sin~vt!

b2
21v2 ,

~25!

and

f 7,85cos~vt!2exp~2b1,2t!. ~26!

According to Eq.~12!, ^x& contains the time-independen
term as well as the term which is periodic in time. Since
are interested in the asymptotic value of the correlation fu
tion ~23!, one has to average this equation over the period
the external field 2pv21. Then, Eq.~23! takes the form

^x~ t1t!x~ t !&st5^x2&stg~t!exp~2at!

1
A2

N12N2

f 1f 61 f 2f 5

2 f 3

2 f 4E
0

t

exp~2au!h~u!du, ~27!

where thef i are defined in Eqs.~13!–~16! and ~24!–~26!.
Prior to the analysis of the cumbersome equation~27!, let

us consider the limiting case of white Gaussian noise.
sume that both noises entering Eq.~1! have zero mean an
their autocorrelation functions and their mutual correlat
are

^h~ t !h~s!&5Dd~ t2s!, ^j~ t !j~s!&5«d~ t2s!, ~28!

^j~ t !h~s!&5kA«Dd~ t2s!. ~29!

Transition from the exponential correlators~2! and ~3! to
thed correlators~28! and~29! can be performed by the limit
s1,2,3˜`, l1,2,3˜` keeping the following ratios constant

s1

l1
5const[D,

s2

l2
5const[e,

s3

l3
5const5kAeD.

~30!
e
-

of

-

s

Taking these limits in the above-obtained formulas, one g
the following.

White noise:

^x~ t !&5S x~ t0!1
kA«D

a2e D exp@2~a2e!~ t2t0!#

1AE
t0

t

exp@2~a2e!~ t2u!#cos~vu!du2
kAeD

a2e
,

~31!

^x2~ t !&5S x2~ t0!2
D

a22e Dexp@22~a22e!~ t2t0!#

1
D

a22e
1E

t0

t

@2A cos~vu!6kAeD#^x~u!&

3exp@22~a22e!~ t2u!#du, ~32!

^x2&st5
D

a22e
1

~a2e!A2

2~a22e!@~a2e!21v2#

1
3k2eD

~a2e!~a22e!
, ~33!

^x~s1t!x~s!&5S D

a22e
1

A2e

2~a22e!@~a2e!21v2#

1
k2eD~2a2e!

~a2e!2~a22e! Dexp@2~a2e!utu#

1
A2 cos~vt!

2@~a2e!21v2#
1

k2eD

~a2e!2 . ~34!

Equations~32! and ~33! for the moments, as well as Eq
~34! for the correlation function, reduce to previously know
results in the corresponding limiting cases. In the absenc
an external field (A50) and additive noise (D5k50), Eqs.
~32! and ~33! coincide with those obtained in@24#, while in
the absence of multiplicative noise (e5k50), Eq. ~34! re-
duces to that given in@25#.

According to the Wiener-Khinchin theorem@26#, the
power spectrum of fluctuationsS(V) is defined as the Fou
rier transform of the correlation function. We consider t
one-sided averaged power spectrum defined for positiveV
only, i.e.,

S~V!5
2~a2e!

~a2«!21V2 S D

a22«
1

A2«

2~a22«!@~a2«!21v2#

1
k2«D~2a2«!

~a2«!2~a22«! D1
pA2

~a2«!21v2 d~V2v!

1
2pk2«D

~a2«!2 d~V!. ~35!

The power spectrumS(V), Eq. ~35!, consists of three
parts: the signal output, which is represented by ad function
at frequencyV, the zero-frequency term connected with t
cross correlation between noises, and a Lorenzian n
background. The noise part contains two ‘‘noise’’ contrib
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PRE 60 1497STOCHASTIC RESONANCE IN LINEAR SYSTEMS . . .
tions and an additional term which represents the effec
the signal on the noise. Although the ‘‘noise’’ term
slightly influenced by the signal, the signal-to-noise ra
~SNR! is usually defined@1,25# as a ratio of the signal to
‘‘noise’’ power. Notice that the definition of SNR become
more problematic if one assumesad hocthat noise depend
on the signal@21,6#.

The SNR is defined by Eq.~35! as

RSN5

pA2
a22«

a2«

2D1
A2«

@~a2«!21v2#
1

2k2D«~2a2«!

~a2«!2

~36!

which in the absence of multiplicative noise («50) reduces
to the signal-to-noise ratio of the input signal,

RSN'
pA2

2D
. ~37!

The following conclusions can be drawn from Eqs.~35!–
~37!:

~i! If, analogously to Refs.@3–6#, one chooses the
asymptotic value of the first moment as an indication of S
then the amplitude of the periodic term remains a monoto
function of the noise strength« as was already established
the above-mentioned articles.

~ii ! The signal-to-noise ratio for the small amplitude of
external field, Eq.~36!, decreases whereas the SNR rema
a monotonic function of« for all «,a, where^x(t)& remains
bounded.

Hence, the white multiplicative and additive noise in t
linear equation~1! does not lead to nonmonotonic behavi
of the signal-to-noise ratio, and one needs, therefore, to
to color noise.

As one can see from Eqs.~23!–~27!, the correlation func-
tion for the color noise~27! contains the same exponenti
and simple trigonometric functions oft as the correlation
function ~35! for white noise. Therefore, the power spectru
of fluctuations will have the same general form~noise-

FIG. 1. Signal-to-noise ratio as a function of the frequencyv of
an external field for symmetric multiplicative noise (L150) in the
absence of the cross correlation between multiplicative and add
noise (s350). The curves from the bottom upwards correspond
different values of the amplitude of an external fieldA51.1, 1.5,
1.7, and 2.0. The parameters area5s15s25l15l251.
f

,
ic

s

rn

induced Lorentzian background andd-function peak at the
frequency of an external field! with a more cumbersome
form for the appropriate coefficients.

For the case of noncorrelated multiplicative and addit
noise,s350, the Fourier transform of the correlation fun
tion ~27! can be written in the following form:

S~V!5
1

b12b2
FpA2

f 3
~ l 1u22 l 2u1!d~v2V!

12^x2&st~b2l 12b1l 2!2
A2

f 3
S b2l 1u2

b2
21V2 2

b1l 2u1

b1
21V2D G ,

~38!

where

l 1,25
b1,22a

b2,1
2 1V2 , u1,25b1,2f 11 f 2V.

Then, the signal-to-noise ratio is

RSN5
pA2~ l 1u22 l 2u1!

2^x2&st f 3~b2l 12b1l 2!1A2S b2l 1u2

b2
21V2 2

b1l 2u1

b1
21V2D .

~39!

For the limiting cases of small (Vb1,2,1) and large
(Vb1,2.1) frequencies of the external signal,

RSN,Vb1,2,1
'K11K2V2, ~40!

RSN,Vb1,2.1
'

1

2a2s2~2a1l1!
1

K3

V2, ~41!

where the positive quantitiesKi can be easily found from Eq
~39!.

As seen from Eqs.~40! and ~41!, the SNR increases ini
tially asV2, and then reaches the limiting value from abov
i.e., the SNR has a maximum for some intermediateV. In
Fig. 1, the SNR is shown as a function ofV for symmetric
dichotomous noise (L150) for four different values of the
amplitude of the external field (A51.1,1.5,1.7,2.0). Hence
our exact calculation shows nonmonotonic behavior of

ve
o

FIG. 2. Influence of nonsymmetry of multiplicative noise~L1

50, 0.2, 0.4, 0.6, and 1.0! on the frequency dependence of the SN
shown in Fig. 1. The amplitude of the external fieldA51 and all
other parameters are the same as in Fig. 1.
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1498 PRE 60V. BERDICHEVSKY AND M. GITTERMAN
signal-to-noise ratio as a function of the frequency of
external field, which is abona fideresonance phenomeno
The latter phenomenon does not appear in the comm
used adiabatic approximation, which applies only at low f
quencies.

The influence of the asymmetry of multiplicative noise
the above-mentioned effect is shown in Fig. 2 forL150,
0.2, 0.4, 0.6, 1.0. A similar phenomenon was found ear
@27# for a slightly different definition of the signal-to-nois
ratio in the absence of additive noise.

So far we have considered the SNR as a function of
frequency of an external field, whereas the SNR is usu
considered as a function of the noise strength. In our lin
case, we did not find any nonmonotonic dependence on
strength of multiplicative noise. However, another form
nonmonotonic behavior—in this case, minima—appe
when the signal-to-noise ratio is plotted as a function of
correlation timet[l1

21 for different values of the noise
strength~Fig. 3!; a similar effect was seen earlier@3–6#.

Equation~39! describes the power spectrum for noncor
lated multiplicative and additive noise. A straightforward b
tedious calculation in the presence of such correlations,s3
Þ0, yields

FIG. 3. SNR as a function of the correlation timet1[l1
21 of

multiplicative noise for different values of the strength of this no
~s151, 2, 3, and 4! for a55 andD151. Other parameters are th
same as in Fig. 1.

FIG. 4. SNR as a function of the correlation timet1[l1
21 of

multiplicative noise in the presence of the cross correlations3 be-
tween multiplicative and additive noise fora52 ands259. Other
parameters are the same as in Fig. 3.
n

ly
-

r

e
ly
ar
he
f
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e

-
t

S~V!5
b12a

b12b2
H pA2~ f 1b21 f 2v!

f 3~b2
21v2!

d~v2V!1S 2b2^x
2&st

2
A2b2~ f 1b21 f 2v!

f 3~b2
21v2!

2
2 f 4s3

l3
D 1

~b2
21V2!

1
2 f 4s3

l3@~b21l3!21V2#
1

2p f 4s3

b2~b21l3!
d~V!J

1~b1↔b2!, ~42!

where the last term, (b1↔b2), is obtained from the first term
by interchangingb1 andb2 . Equation~42! contains two re-
laxation frequencies of the dichotomous noise,b1 and b2
~with additional frequencies,b1,21l3 , for the correlated
multiplicative and additive noise!. The latter reduce to a
single frequencya2« for the limiting case of white noise.

The signal-to-noise ratioR is defined, analogously to Eqs
~35!, ~ 36!, and~39!, as the ratio of the intensity at frequenc
v @the amplitude of thed function in the first term in Eq.
~42!# to a sum of Lorentzian noise background at the sa
frequency. There are four such Lorentzians in Eq.~42! for

FIG. 5. SNR as a function of the correlation timet1[l1
21 of

multiplicative noise in the presence of the cross correlations3 be-
tween multiplicative and additive noise fors254. Other parameters
are the same as in Fig. 4.

FIG. 6. SNR as a function of the frequencyv of an external
field in the presence of the cross correlations3 between multipli-
cative and additive noise fors259. Other parameters are the sam
as in Fig. 1.



n
o

i
tiv
ia
.
o
s

a

o
n

io
a

or-

u-
SR,
ti-

s, its
the
f.
ur
s

e

the
l-

of

ve
e

PRE 60 1499STOCHASTIC RESONANCE IN LINEAR SYSTEMS . . .
the correlated noise which reduce to the sum of two Lore
zians when the multiplicative and additive noise are nonc
related.

All the curves shown in Figs. 1–3 have been obtained
the absence of the cross correlation between multiplica
and additive noise. The latter, however, results in essent
new features of SR as seen from the following examples

In Figs. 4 and 5, we show the influence of the cross c
relation between multiplicative and additive noise on SR a
function of the correlation time for different valuess3 of
these correlations. As a result, fors3Þ0, the minima shown
in Fig. 3 may disappear~Fig. 4!, and, moreover, the maxim
can be observed~Fig. 5!.

A similar phenomenon, namely the disappearance
maxima shown in Fig. 1 as a result of the cross correlatio
is presented in Fig. 6.

On the other hand, the existence of the cross correlat
may lead to some new phenomena, such as the maxim
SNR as a function of the asymmetry of noise~Fig. 7!, which

FIG. 7. SNR as a function of the asymmetry of multiplicati
noiseL1 for different values of the strength of multiplicative nois
for s351. Other parameters are the same as in Fig. 3.
ev
t-
r-

n
e

lly

r-
a

f
s,

ns
of

is absent when multiplicative and additive noise are nonc
related,s350.

It must be emphasized that our analysis is crucially infl
enced by the definition adopted for the characteristics of
as can be illustrated by the following example. Only mul
plicative noise has been considered in Ref.@6#, and the out-
put signal has been accepted as a measure of SR. Thu
nonmonotonic behavior has been found as a function of
correlation time of noise, which is shown in Fig. 6 of Re
@6#. This graph—which represents only the first term in o
Eq. ~39!—is reproduced in our Fig. 8 with the ordinate
shown at the left axis of this figure. In the same figure~with
ordinates at the right axis!, we show the usual signal-to-nois
ratio defined with the help of all the terms in Eq.~39! As one
can see from the comparison of these two graphs,
maxima obtained in Ref.@6# disappear if one uses the signa
to-noise ratio instead of the signal itself.

Due to its simplicity, the linear equation~1! allows an
exact solution, which shows the different manifestations
stochastic resonance.

FIG. 8. SNR defined as an output signal~dotted line! as in Ref.
@6# or as its ratio to the noise background@Eq. ~39!#. The parameters
area5s25l25v5A51, s150.25, ands350.
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